A Multisensor Cycle-Supervised Convolutional Neural Network for Anomaly Detection on Magnetic Flux Leakage Signals
Author:
Affiliation:
1. College of Information Science and Engineering, Northeastern University, Shenyang, China
2. State Key Laboratory of Synthetical Automation for Process Industries, Shenyang, China
Funder
National Natural Science Foundation of China
LiaoNing Revitalization Talents Program
Fundamental Research Funds for the Central Universities
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/9895125/09695226.pdf?arnumber=9695226
Reference25 articles.
1. Compressive-sensing data reconstruction for structural health monitoring: a machine-learning approach
2. Computer vision and deep learning–based data anomaly detection method for structural health monitoring
3. Variational LSTM Enhanced Anomaly Detection for Industrial Big Data
4. Low rank and collaborative representation for hyperspectral anomaly detection via robust dictionary construction
5. ImageNet classification with deep convolutional neural networks
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Rapid Screening Method for Suspected Defects in Steel Pipe Welds by Combining Correspondence Mechanism and Normalizing Flow;IEEE Transactions on Industrial Informatics;2024-09
2. Airborne magnetic anomaly detection based on Bi-stable stochastic resonance system;Measurement;2024-09
3. Multi-modality hierarchical attention networks for defect identification in pipeline MFL detection;Measurement Science and Technology;2024-08-05
4. A Novel Weld Defect Detection Method for Intelligent Magnetic Flux Leakage Detection System via Contextual Relation Network;IEEE Transactions on Industrial Electronics;2024-06
5. Simulation analysis of magnetic focusing for buried pipeline;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3