Compressive-sensing data reconstruction for structural health monitoring: a machine-learning approach

Author:

Bao Yuequan123ORCID,Tang Zhiyi123ORCID,Li Hui123ORCID

Affiliation:

1. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, China

2. Artificial Intelligence Lab, Harbin Institute of Technology, Harbin, China

3. School of Civil Engineering, Harbin Institute of Technology, Harbin, China

Abstract

Compressive sensing has been studied and applied in structural health monitoring for data acquisition and reconstruction, wireless data transmission, structural modal identification, and spare damage identification. The key issue in compressive sensing is finding the optimal solution for sparse optimization. In the past several years, many algorithms have been proposed in the field of applied mathematics. In this article, we propose a machine learning–based approach to solve the compressive-sensing data-reconstruction problem. By treating a computation process as a data flow, the solving process of compressive sensing–based data reconstruction is formalized into a standard supervised-learning task. The prior knowledge, i.e. the basis matrix and the compressive sensing–sampled signals, is used as the input and the target of the network; the basis coefficient matrix is embedded as the parameters of a certain layer; and the objective function of conventional compressive sensing is set as the loss function of the network. Regularized by l1-norm, these basis coefficients are optimized to reduce the error between the original compressive sensing–sampled signals and the masked reconstructed signals with a common optimization algorithm. In addition, the proposed network is able to handle complex bases, such as a Fourier basis. Benefiting from the nature of a multi-neuron layer, multiple signal channels can be reconstructed simultaneously. Meanwhile, the disassembled use of a large-scale basis makes the method memory-efficient. A numerical example of multiple sinusoidal waves and an example of field-test wireless data from a suspension bridge are carried out to illustrate the data-reconstruction ability of the proposed approach. The results show that high reconstruction accuracy can be obtained by the machine learning–based approach. In addition, the parameters of the network have clear meanings; the inference of the mapping between input and output is fully transparent, making the compressive-sensing data-reconstruction neural network interpretable.

Funder

National Key R&D Program of China

national natural science foundation of china

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3