Effect of Balancing Data Using Synthetic Data on the Performance of Machine Learning Classifiers for Intrusion Detection in Computer Networks
Author:
Affiliation:
1. Department of Computer Science, University of Kentucky, Lexington, KY, USA
Funder
Department of Computer Science, University of Kentucky, Lexington, KY, USA
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09882118.pdf?arnumber=9882118
Reference73 articles.
1. Forecasting emerging technologies using data augmentation and deep learning
2. Power quality disturbance classification based on time-frequency domain multi-feature and decision tree
3. Protocol-Based Deep Intrusion Detection for DoS and DDoS Attacks Using UNSW-NB15 and Bot-IoT Data-Sets
4. A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion;yu;IEEE J Sel Topics Appl Earth Observ Remote Sens,2020
5. Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Batch reinforcement learning approach using recursive feature elimination for network intrusion detection;Engineering Applications of Artificial Intelligence;2024-10
2. Enhancing intrusion detection performance using explainable ensemble deep learning;PeerJ Computer Science;2024-09-13
3. Recent endeavors in machine learning-powered intrusion detection systems for the Internet of Things;Journal of Network and Computer Applications;2024-09
4. PPFCM-SMOTE: a novel balancing system for anomaly detection in IoT edge using probabilistic possibilistic fuzzy clustering and SMOTE;International Journal of Information Technology;2024-08-13
5. Enhancing machine learning efficacy and fairness in automated decision systems: an adversarial deep generative modeling with CoBS-TGAN approach in imbalanced and biased datasets;International Journal of System Assurance Engineering and Management;2024-07-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3