Power quality disturbance classification based on time-frequency domain multi-feature and decision tree

Author:

Zhao WenjingORCID,Shang Liqun,Sun Jinfan

Abstract

AbstractAccurate classification of power quality disturbance is the premise and basis for improving and governing power quality. A method for power quality disturbance classification based on time-frequency domain multi-feature and decision tree is presented. Wavelet transform and S-transform are used to extract the feature quantity of each power quality disturbance signal, and a decision tree with classification rules is then constructed for classification and recognition based on the extracted feature quantity. The classification rules and decision tree classifier are established by combining the energy spectrum feature quantity extracted by wavelet transform and other seven time-frequency domain feature quantities extracted by S-transform. Simulation results show that the proposed method can effectively identify six types of common single disturbance signals and two mixed disturbance signals, with fast classification speed and adequate noise resistance. Its classification accuracy is also higher than those of support vector machine (SVM) and k-nearest neighbor (KNN) algorithms. Compared with the method that only uses S-transform, the proposed feature extraction method has more abundant features and higher classification accuracy for power quality disturbance.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality

Reference17 articles.

1. Xiao, X.N. (2010). Analysis and control of power quality [M]. Beijing: China Electric Power Press, 124–128.

2. Zhang, Y., & Liu., Z.G. (2012). A new power quality hybrid disturbance classification method based on time-frequency domain multi-characteristic quantities [J]. Proceedings of the CSEE, 32(34), 83–90.

3. Zhang, B. (2010). Power quality analysis method based on Mallat algorithm and fast Fourier transform [C]. Power Quality Seminar, 35–40.

4. Jurado, F., & Saenz, J. R. (2002). Comparison between discrete STFT and wavelets for the analysis of power quality events[J]. Electr Power Syst Res, 62(3), 183–190.

5. Huang, J.M, Qu, H.Z, & Li, X.M. (2016). Classification of mixed disturbance of power quality based on short-time Fourier transform and spectral kurdiness [J]. Power System Technology, 40(10), 3184–3191.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3