Breast Cancer Classification From Histopathological Images Using Resolution Adaptive Network
Author:
Affiliation:
1. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
Funder
National Natural Science Foundation of China
Award Foundation of Chinese Academy of Sciences
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09745527.pdf?arnumber=9745527
Reference46 articles.
1. Rectified linear units improve restricted Boltzmann machines Vinod Nair;nair;Proc 27th Int Conf Mach Learn (ICML),2010
2. Batch normalization: Accelerating deep network training by reducing internal covariate shift;ioffe;Proc Int Conf Mach Learn,2015
3. Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network
4. A tree-based multiclassification of breast tumor histopathology images through deep learning
5. Breast cancer multi-classification from histopathological images with structured deep learning model;han;Sci Rep,2017
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel hybrid deep CNN model for breast cancer classification using Lipschitz-based image augmentation and recursive feature elimination;Biomedical Signal Processing and Control;2024-09
2. A framework for classifying breast cancer via heterogenetic attention mechanism and optimized feature selection;Intelligent Data Analysis;2024-08-01
3. Magnification Independent Breast Cancer Analysis Using Vision Transformer;Multimedia Tools and Applications;2024-07-01
4. Histopathology-based breast cancer prediction using deep learning methods for healthcare applications;Frontiers in Oncology;2024-06-04
5. EfficientNet-B7 framework for anomaly detection in mammogram images;Multimedia Tools and Applications;2024-05-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3