Hyperspectral Anomaly Detection With Relaxed Collaborative Representation
Author:
Affiliation:
1. Department of Technology of Computers and Communications, Hyperspectral Computing Laboratory, University of Extremadura, Cáceres, Spain
2. School of Earth Sciences and Engineering, Hohai University, Nanjing, China
Funder
Consejería de Economía, Ciencia y Agenda Digital of the Junta de Extremadura and the European Regional Development Fund (ERDF) of the European Union
Spanish Ministerio de Ciencia e Innovacion
European Union’s Horizon 2020 Research and Innovation Program
China Scholarship Council
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/9633014/09826842.pdf?arnumber=9826842
Reference56 articles.
1. Hyperspectral Anomaly Detection Via Dual Collaborative Representation
2. A Hyperspectral Anomaly Detection Method Based on Low-Rank and Sparse Decomposition With Density Peak Guided Collaborative Representation
3. Hyperspectral Anomaly Detection by the Use of Background Joint Sparse Representation
4. Low-rank tensor decomposition based anomaly detection for hyperspectral imagery
5. Hyperspectral Anomaly Detection With Total Variation Regularized Low Rank Tensor Decomposition and Collaborative Representation
Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Collaborative representation based unsupervised CNN for hyperspectral anomaly detection;Infrared Physics & Technology;2024-09
2. Discriminative coefficient analysis-based collaborative representation with enhanced Background-Anomaly separation for hyperspectral anomaly detection;Infrared Physics & Technology;2024-09
3. UFBSM: unmixing fusion and background sparse dictionary Model for hyperspectral anomaly detection;International Journal of Remote Sensing;2024-05-16
4. Hyperspectral anomaly detection based on adaptive background dictionary construction and collaborative representation;International Journal of Remote Sensing;2024-05-07
5. Pixel-associated autoencoder for hyperspectral anomaly detection;International Journal of Applied Earth Observation and Geoinformation;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3