Hyperspectral Anomaly Detection With Total Variation Regularized Low Rank Tensor Decomposition and Collaborative Representation
Author:
Affiliation:
1. College of Information and Communication Engineering and the Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin, China
Funder
National Natural Science Foundation of China
Heilongjiang Provincial Natural Science Foundation
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Geotechnical Engineering and Engineering Geology
Link
http://xplorestaging.ieee.org/ielx7/8859/9651998/09762719.pdf?arnumber=9762719
Reference18 articles.
1. Prior-Based Tensor Approximation for Anomaly Detection in Hyperspectral Imagery
2. Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery
3. Discriminative Reconstruction Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection
4. A Hyperspectral Anomaly Detection Method Based on Low-Rank and Sparse Decomposition With Density Peak Guided Collaborative Representation
5. Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Novel RFID Dynamic Testing Method Based on Optical Measurement;CURR OPT PHOTONICS;2024
2. Hyperspectral Anomaly Detection via MERA Decomposition and Enhanced Total Variation Regularization;IEEE Transactions on Geoscience and Remote Sensing;2024
3. Spatial Activation Suppression for Unsupervised Anomaly Detectors in Freight Train Fault Detection;IEEE Transactions on Instrumentation and Measurement;2024
4. Transfer Learning of Spatial Features From High-Resolution RGB Images for Large-Scale and Robust Hyperspectral Remote Sensing Target Detection;IEEE Transactions on Geoscience and Remote Sensing;2024
5. An Attention-Based Multiscale Spectral–Spatial Network for Hyperspectral Target Detection;IEEE Geoscience and Remote Sensing Letters;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3