Deep Reinforcement Learning Based Acceleration Approach for Day-Ahead Optimal Dispatch of Integrated Energy Systems
Author:
Affiliation:
1. State Grid Zhejiang Electric Power Co., Ltd. Research Institute,Hangzhou,China
2. Xi’an Jiaotong University,School of Electrical Engineering,Xi’an,China
3. State Grid Ningbo Power Supply Co., Ltd,Ningbo,China
Funder
Science and Technology Project of State Grid
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10113858/10114069/10114294.pdf?arnumber=10114294
Reference18 articles.
1. Optimal energy management strategies for energy Internet via deep reinforcement learning approach
2. Robust Constrained Operation of Integrated Electricity-Natural Gas System Considering Distributed Natural Gas Storage
3. Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning
4. Deep reinforcement learning–based approach for optimizing energy conversion in integrated electrical and heating system with renewable energy
5. Second-Order Cone Programming for Data-Driven Fluid and Gas Energy Flow With a Tight Reformulation
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3