Deep reinforcement learning–based approach for optimizing energy conversion in integrated electrical and heating system with renewable energy
Author:
Publisher
Elsevier BV
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Reference60 articles.
1. The irreversible momentum of clean energy;Obama;Science,2017
2. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources;Abdmouleh;Renew Energy,2017
3. Development, analysis and assessment of solar energy-based multi -generation system with thermoelectric generator;Islam;Energy Convers Manage,2018
4. Assessment of wind power generation along the coast of Ghana;Adaramola;Energy Convers Manage,2014
5. Energy: Share, of renewable energy up to 14% of energy consumption in 2012 European Report 2014 352760.
Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimal operational planning of a bio-fuelled cogeneration plant: Integration of sparse nonlinear dynamics identification and deep reinforcement learning;Applied Energy;2024-12
2. Real-time automatic control of multi-energy system for smart district community: A coupling ensemble prediction model and safe deep reinforcement learning;Energy;2024-09
3. Deep reinforcement learning-based optimal scheduling of integrated energy systems for electricity, heat, and hydrogen storage;Electric Power Systems Research;2024-08
4. Knowledge-network-embedded deep reinforcement learning: An innovative way to high-efficiently develop an energy management strategy for the integrated energy system with renewable energy sources and multiple energy storage systems;Energy;2024-08
5. An online algorithm for combined computing workload and energy coordination within a regional data center cluster;International Journal of Electrical Power & Energy Systems;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3