Diagnosing Cervical Cancer Using Machine Learning Methods
Author:
Affiliation:
1. Institute of Graduate Studies, Altinbaş University,İstanbul,Turkey
2. AltinbaşUniversity,Software Engineering,İstanbul,Turkey
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9799780/9799803/09800033.pdf?arnumber=9800033
Reference15 articles.
1. Cervical Cancer Identification with Synthetic Minority Oversampling Technique and PCA Analysis using Random Forest Classifier
2. Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods
3. Machine learning for assisting cervical cancer diagnosis: An ensemble approach
4. Optimization of Decision Tree Machine Learning Strategy in Data Analysis
5. Random forest (machine learning)
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient Feature Selection Approach for Prediction of Cervical Cancer Using Machine Learning Algorithms;2023 International Conference on Modeling, Simulation & Intelligent Computing (MoSICom);2023-12-07
2. An Efficient Deep Learning Model for Intraoperative Tissue Classification in Gynecological Cancer;2023 9th International Conference on Smart Structures and Systems (ICSSS);2023-11-23
3. Early diagnosis of cervical cancer using Machine Learning approaches: Comparative Analysis;2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE);2023-11-01
4. Expert System Techniques in Intelligent Diagnostic Digital Cytopathology System for Cervical Intraepithelial Neoplasia Detection;2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT);2023-02-11
5. A Novel and Effective method for Early Identification of Cervical Cancer based on Gradient Boosting Classifier;2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF);2023-01-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3