Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods

Author:

Ijaz Muhammad FazalORCID,Attique MuhammadORCID,Son YoungdooORCID

Abstract

Globally, cervical cancer remains as the foremost prevailing cancer in females. Hence, it is necessary to distinguish the importance of risk factors of cervical cancer to classify potential patients. The present work proposes a cervical cancer prediction model (CCPM) that offers early prediction of cervical cancer using risk factors as inputs. The CCPM first removes outliers by using outlier detection methods such as density-based spatial clustering of applications with noise (DBSCAN) and isolation forest (iForest) and by increasing the number of cases in the dataset in a balanced way, for example, through synthetic minority over-sampling technique (SMOTE) and SMOTE with Tomek link (SMOTETomek). Finally, it employs random forest (RF) as a classifier. Thus, CCPM lies on four scenarios: (1) DBSCAN + SMOTETomek + RF, (2) DBSCAN + SMOTE+ RF, (3) iForest + SMOTETomek + RF, and (4) iForest + SMOTE + RF. A dataset of 858 potential patients was used to validate the performance of the proposed method. We found that combinations of iForest with SMOTE and iForest with SMOTETomek provided better performances than those of DBSCAN with SMOTE and DBSCAN with SMOTETomek. We also observed that RF performed the best among several popular machine learning classifiers. Furthermore, the proposed CCPM showed better accuracy than previously proposed methods for forecasting cervical cancer. In addition, a mobile application that can collect cervical cancer risk factors data and provides results from CCPM is developed for instant and proper action at the initial stage of cervical cancer.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3