A Deep Learning-Based Experiment on Forest Wildfire Detection in Machine Vision Course
Author:
Affiliation:
1. School of Engineering, Hangzhou Normal University, Hangzhou, China
2. School of Information Science and Technology, Hangzhou Normal University, Hangzhou, China
3. College of Computer Science and Technology, Zhejiang University, Hangzhou, China
Funder
Zhejiang Provincial High-Education Teaching Reform Project
Zhejiang Provincial Educational Science Planning Project
AI Micro-Major Project
China Knowledge Centre for Engineering Sciences and Technology
Joint Funds of the Zhejiang Provincial Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10083121.pdf?arnumber=10083121
Reference40 articles.
1. Exploration on the Teaching Reform Measure for Machine Learning Course System of Artificial Intelligence Specialty
2. Real-Time Wildfire Detection via Image-Based Deep Learning Algorithm
3. Making computer vision accessible for undergraduates;spurlock;J Comput Sci Colleges,2017
4. Wildfire Detection From Multisensor Satellite Imagery Using Deep Semantic Segmentation
5. Connections of climate change and variability to large and extreme forest fires in southeast Australia
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Review of Modern Forest Fire Detection Techniques: Innovations in Image Processing and Deep Learning;Information;2024-09-03
2. A comprehensive survey of research towards AI-enabled unmanned aerial systems in pre-, active-, and post-wildfire management;Information Fusion;2024-08
3. Advancing Wildfire Detection: Using YOLOv8 on Multifarious Images;2024 9th International Conference on Control and Robotics Engineering (ICCRE);2024-05-10
4. SWIFT: Simulated Wildfire Images for Fast Training Dataset;Remote Sensing;2024-05-02
5. Domain-free fire detection using the spatial–temporal attention transform of the YOLO backbone;Pattern Analysis and Applications;2024-04-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3