Improvement of Gastroscopy Classification Performance Through Image Augmentation Using a Gradient-Weighted Class Activation Map

Author:

Ham Hyun-Sik1ORCID,Lee Han-Sung1,Chae Jung-Woo1,Cho Hyun Chin2,Cho Hyun-Chong1ORCID

Affiliation:

1. Department Graduate Program for BIT Medical Convergence, Kangwon National University, Chuncheon, South Korea

2. Department of Internal Medicine, School of Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, South Korea

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean Government [Ministry of Science and Information and Communication Technology (MSIT)]

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Reference33 articles.

1. Deep Learning based Gastric Lesion Classification System using Data Augmentation

2. Reading digits in natural images with unsupervised feature learning;netzer;Proc NeurIPSW,2011

3. ImageNet: A large-scale hierarchical image database

4. Learning multiple layers of features from tiny images;krizhevsky,2009

5. Spotting malignancies from gastric endoscopic images using deep learning

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic review of deep learning data augmentation in medical imaging: Recent advances and future research directions;Healthcare Analytics;2024-06

2. Exploring DeepDream and XAI Representations for Classifying Histological Images;SN Computer Science;2024-03-29

3. Online Auction System;International Journal of Advanced Research in Science, Communication and Technology;2024-03-23

4. Detection of Gastrointestinal Lesions using Deep Learning;International Journal of Advanced Research in Science, Communication and Technology;2024-03-23

5. HFRAS: design of a high-density feature representation model for effective augmentation of satellite images;Signal, Image and Video Processing;2023-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3