Detection of Gastrointestinal Lesions using Deep Learning

Author:

Ms. Sangeetha G 1,Mr. Akash A 1,Mr. Dany Joseph C 1,Mr. Haarish Raj K 1

Affiliation:

1. SRM Valliammai Engineering College, Chennai, Tamil Nadu, India

Abstract

In the context of gastrointestinal health, this paper focuses on the identification of lesions and six stages of it using deep learning techniques. Gastrointestinal lesions can be challenging to diagnose accurately, often leading to delayed treatment and potential health complications. Like challenges in medical diagnosis, where early detection is crucial, this paper aims to provide a robust solution for early lesion identification. We leverage advanced algorithms such as modified ResNet34 a Convolutional Neural Network architecture and Pytorch, for effective filtering processes. The proposed predictive analytics framework incorporates machine learning techniques to minimize error rates. Our model processes gastrointestinal image data, facilitating accurate lesion identification. Through extensive experimentation, our model demonstrates promising results in early lesion detection, facilitating timely clinical intervention and improved patient outcomes. The utilization of Visual Studio Code enhances our development process, ensuring a seamless implementation of our deep learning methodology. Overall, our project aims to enhance diagnostic accuracy, paving the way for improved clinical monitoring and ultimately contributing to a healthier and more secure lifestyle for individuals with gastrointestinal concerns.

Publisher

Naksh Solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3