Real-Time Classification of Radiation Pulses With Piled-Up Recovery Using an FPGA-Based Artificial Neural Network
Author:
Affiliation:
1. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
2. Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
Funder
U.S. Department of Homeland Security, Countering Weapons of Mass Destruction Office, Academic Research Initiative
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
https://ieeexplore.ieee.org/ielam/6287639/10005208/10190588-aam.pdf
Reference33 articles.
1. Machine learning for digital pulse shape discrimination
2. An investigation of the digital discrimination of neutrons and γ rays with organic scintillation detectors using an artificial neural network
3. Artificial neural network algorithms for pulse shape discrimination and recovery of piled-up pulses in organic scintillators
4. A comparison of artificial neural network performance: The case of neutron/gamma pulse shape discrimination
5. Reconstruction of fast neutron direction in segmented organic detectors using deep learning
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Investigating resource-efficient neutron/gamma classification ML models targeting eFPGAs;Journal of Instrumentation;2024-07-01
2. Model-Based Deep Learning Algorithm for Detection and Classification at High Event Rates;IEEE Transactions on Nuclear Science;2024-05
3. Machine learning evaluation in the Global Event Processor FPGA for the ATLAS trigger upgrade;Journal of Instrumentation;2024-05-01
4. Hardware Acceleration of Digital Pulse Shape Analysis Using FPGAs;Sensors;2024-04-25
5. A Review of Neutron–Gamma-Ray Discrimination Methods Using Organic Scintillators;Nuclear Science and Engineering;2024-02-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3