Machine learning evaluation in the Global Event Processor FPGA for the ATLAS trigger upgrade

Author:

Jiang ZhixingORCID,Carlson Ben,Deiana Allison,Eastlack Jeff,Hauck Scott,Hsu Shih-Chieh,Narayan Rohin,Parajuli Santosh,Yin Dennis,Zuo Bowen

Abstract

Abstract The Global Event Processor (GEP) FPGA is an area-constrained, performance-critical element of the Large Hadron Collider's (LHC) ATLAS experiment. It needs to very quickly determine which small fraction of detected events should be retained for further processing, and which other events will be discarded. This system involves a large number of individual processing tasks, brought together within the overall Algorithm Processing Platform (APP), to make filtering decisions at an overall latency of no more than 8ms. Currently, such filtering tasks are hand-coded implementations of standard deterministic signal processing tasks. In this paper we present methods to automatically create machine learning based algorithms for use within the APP framework, and demonstrate several successful such deployments. We leverage existing machine learning to FPGA flows such as hls4ml and fwX to significantly reduce the complexity of algorithm design. These have resulted in implementations of various machine learning algorithms with latencies of 1.2 μs and less than 5% resource utilization on an Xilinx XCVU9P FPGA. Finally, we implement these algorithms into the GEP system and present their actual performance. Our work shows the potential of using machine learning in the GEP for high-energy physics applications. This can significantly improve the performance of the trigger system and enable the ATLAS experiment to collect more data and make more discoveries. The architecture and approach presented in this paper can also be applied to other applications that require real-time processing of large volumes of data.

Publisher

IOP Publishing

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3