Deep Learning in Cervical Cancer Diagnosis: Architecture, Opportunities, and Open Research Challenges
Author:
Affiliation:
1. Faculty of Innovation and Technology, School of Computer Science (SCS), Taylor’s University, Subang Jaya, Malaysia
2. School of Biosciences, Taylor’s University, Subang Jaya, Malaysia
Funder
Ministry of Higher Education (MOHE) under the Fundamental Research Grant Scheme
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10013651.pdf?arnumber=10013651
Reference98 articles.
1. Feature selection and feature extraction in pattern analysis: A literature review;ghojogh;arXiv 1905 02845,2019
2. A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches
3. Techniques of feature extraction based on;joshi;Image,2017
4. A review on image feature extraction and representation techniques;tian;Int J Multimed Ubiquitous Eng,2013
5. A Review of Computational Methods for Cervical Cells Segmentation and Abnormality Classification
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Improved Adaptive Neuro-fuzzy Inference Framework for Lung Cancer Detection and Prediction on Internet of Medical Things Platform;International Journal of Computational Intelligence Systems;2024-09-02
2. Enhancing cervical cancer cytology screening via artificial intelligence innovation;Scientific Reports;2024-08-22
3. Application of artificial intelligence in cervical cancer screening: Enhancing accuracy and reducing misdiagnosis;Journal of Clinical Nursing;2024-08-20
4. Quantum Deep Learning for Automatic Chronic Kidney Disease Identification and Classification with CT images;2024-08-13
5. A systematic review and research recommendations on artificial intelligence for automated cervical cancer detection;WIREs Data Mining and Knowledge Discovery;2024-07-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3