Multi-mode signal fusion and improved residual dense network fault diagnosis of nuclear power plant
Author:
Affiliation:
1. Beijing Information Science & Technology University,Mechanical Electrical Engineering School,Beijing,China,100192
2. China Nuclear Power Engineering Co., Ltd,Instrumentation and Control Institute,Beijing,China,100089
Funder
National Natural Science Foundation of China
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10295546/10295577/10295756.pdf?arnumber=10295756
Reference15 articles.
1. Online detection for bearing incipient fault based on deep transfer learning
2. Rolling bearing fault diagnosis based on optimized VMD and MHA-DenseNet[J];dong;Combined Machine Tools and Automated machining Technology,2022
3. Bearing Fault Diagnosis Based on Multiple Transformation Domain Fusion and Improved Residual Dense Networks
4. A novel dense residual network based on Adam-S optimizer for fault diagnosis of bearings under different working conditions
5. A Multi-Task-Based Deep Multi-Scale Information Fusion Method for Intelligent Diagnosis of Bearing Faults
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3