A Multi-Task-Based Deep Multi-Scale Information Fusion Method for Intelligent Diagnosis of Bearing Faults

Author:

Xin Ruihao1,Feng Xin2ORCID,Wang Tiantian1ORCID,Miao Fengbo1,Yu Cuinan3

Affiliation:

1. School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China

2. School of Science, Jilin Institute of Chemical Technology, Jilin 132022, China

3. School of Software, Jilin University, Changchun 130015, China

Abstract

The use of deep learning for fault diagnosis is already a common approach. However, integrating discriminative information of fault types and scales into deep learning models for rich multitask fault feature diagnosis still deserves attention. In this study, a deep multitask-based multiscale feature fusion network model (MEAT) is proposed to address the limitations and poor adaptability of traditional convolutional neural network models for complex jobs. The model performed multidimensional feature extraction through convolution at different scales to obtain different levels of fault information, used a hierarchical attention mechanism to weight the fusion of features to achieve an accuracy of 99.95% for the total task of fault six classification, and considered two subtasks in fault classification to discriminate fault size and fault type through multi-task mapping decomposition. Of these, the highest accuracy of fault size classification reached 100%. In addition, Precision, ReCall, and Sacore F1 all reached the index of 1, which achieved the accurate diagnosis of bearing faults.

Funder

Science and Technology Project of the Education Department of Jilin Province

National Natural Science Foundation of China Joint Fund Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3