Unsupervised Adversarial Domain Adaptation for Sim-to-Real Transfer of Tactile Images
Author:
Affiliation:
1. School of Automation, Southeast University, Nanjing, China
2. Department of Computer Science, University of Liverpool, Liverpool, U.K
3. Department of Engineering, King's College London, London, U.K
Funder
Jiangsu Province Natural Science Foundation
Zhejiang Laboratory
National Natural Science Foundation of China
EPSRC ViTac Project
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/10106009.pdf?arnumber=10106009
Reference59 articles.
1. Efficient multitask learning with an embodied predictive model for door opening and entry with whole-body control
2. Dynamic Weighted Learning for Unsupervised Domain Adaptation
3. Visual-tactile Sensing for Real-time Liquid Volume Estimation in Grasping
4. Generate to Adapt: Aligning Domains Using Generative Adversarial Networks
5. Integrating contrastive learning with dynamic models for reinforcement learning from images
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Marker or Markerless? Mode-Switchable Optical Tactile Sensing for Diverse Robot Tasks;IEEE Robotics and Automation Letters;2024-10
2. SingleS2R: Single sample driven Sim-to-Real transfer for Multi-Source Visual-Tactile Information Understanding using multi-scale vision transformers;Information Fusion;2024-08
3. Confidence-guided Source Label Refinement and Class-aware Pseudo-Label Thresholding for Domain-Adaptive Semantic Segmentation;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
4. FOTS: A Fast Optical Tactile Simulator for Sim2Real Learning of Tactile-Motor Robot Manipulation Skills;IEEE Robotics and Automation Letters;2024-06
5. Augmenting Tactile Simulators with Real-like and Zero-Shot Capabilities;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3