Application of an Oversampling Method Based on GMM and Boundary Optimization in Imbalance-Bearing Fault Diagnosis
Author:
Affiliation:
1. School of Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, China
2. Yunnan Vocational College of Mechanical and Electrical Technology, Kunming, China
Funder
National Natural Science Foundation of China
Key Scientific Research Projects of Yunnan Province
Yunnan Provincial School Education Cooperation Key Project
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/10411967/10144658.pdf?arnumber=10144658
Reference30 articles.
1. Detection of Bearing Faults in Mechanical Systems Using Stator Current Monitoring
2. A Bearing Fault Diagnosis Method Based on Enhanced Singular Value Decomposition
3. Intelligent fault diagnosis of mechanical equipment under varying working condition via iterative matching network augmented with selective Signal reuse strategy
4. Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Transfer Learning
5. Enhanced Discriminate Feature Learning Deep Residual CNN for Multitask Bearing Fault Diagnosis With Information Fusion
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis;Reliability Engineering & System Safety;2024-11
2. A Novel Detection Design via Drift Calibration and Chebyshev Polynomial Weighted Unbalanced Classifier Design;IEEE Sensors Journal;2024-09-01
3. A Clustering-Guided Source-Free Domain Transfer Learning Diagnostic Method for Rotating Machinery;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20
4. Contrastive feature-based learning-guided elevated deep reinforcement learning: Developing an imbalanced fault quantitative diagnosis under variable working conditions;Mechanical Systems and Signal Processing;2024-04
5. Multiattention-Based Feature Aggregation Convolutional Networks With Dual Focal Loss for Fault Diagnosis of Rotating Machinery Under Data Imbalance Conditions;IEEE Transactions on Instrumentation and Measurement;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3