Enhanced Discriminate Feature Learning Deep Residual CNN for Multitask Bearing Fault Diagnosis With Information Fusion
Author:
Affiliation:
1. College of Engineering and Computing, University of South Carolina, Columbia, SC, USA
Funder
Navy Surface Warfare Center
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/9944026/09787059.pdf?arnumber=9787059
Reference31 articles.
1. Dislocated Time Series Convolutional Neural Architecture: An Intelligent Fault Diagnosis Approach for Electric Machine
2. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals
3. Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network
4. Bearing health condition prediction using deep belief network;zhao;Proc Annu Conf Prognostics Health Manage Soc,0
5. An optimized adaptive PReLU-DBN for rolling element bearing fault diagnosis
Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rotating machinery fault diagnosis method based on multi-level fusion framework of multi-sensor information;Information Fusion;2025-01
2. LSTA-Net framework: Pioneering intelligent diagnostics for insulating bearings under real-world complex operational conditions and its interpretability;Mechanical Systems and Signal Processing;2025-01
3. Novel imbalanced fault diagnosis method based on generative adversarial networks with balancing serial CNN and Transformer (BCTGAN);Expert Systems with Applications;2024-12
4. Multi-timescale attention residual shrinkage network with adaptive global-local denoising for rolling-bearing fault diagnosis;Knowledge-Based Systems;2024-11
5. Neural architecture search for multi-sensor information fusion-based intelligent fault diagnosis;Advanced Engineering Informatics;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3