Automatic Breast Mass Segmentation and Classification Using Subtraction of Temporally Sequential Digital Mammograms

Author:

Loizidou Kosmia1ORCID,Skouroumouni Galateia2,Nikolaou Christos3,Pitris Costas1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus

2. Radiology Department, German Oncology Center, Limassol, Cyprus

3. Radiology Department, Limassol General Hospital, Limassol, Cyprus

Funder

European Union’s Horizon 2020 research and innovation program

Republic of Cyprus through the Directorate General for European Programs, Coordination and Development

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Biomedical Engineering,General Medicine

Reference51 articles.

1. Support-vector networks

2. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review

3. Scikit-learn: Machine learning in Python;pedregosa;J Mach Learn Res,2011

4. Textural Features for Image Classification

5. Importance of statistical measures in digital image processing;kumar;Int J Emerg Technol Adv Eng,2012

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Breast Cancer through the Analysis of Radiographic Images Using Machine Learning: A Systematic Review;International Journal of Online and Biomedical Engineering (iJOE);2024-03-15

2. Breast Cancer Histopathology Images Classification Through Multi-View Augmented Contrastive Learning and Pre-Learning Knowledge Distillation;IEEE Access;2024

3. Optimal Trained Deep Learning Model for Breast Cancer Segmentation and Classification;Information Technology and Control;2023-12-22

4. Cotton Crop Disease Detection Using DL Techniques;2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG);2023-12-08

5. An Efficient Breast Cancer Segmentation System based on Deep Learning Techniques;Engineering, Technology & Applied Science Research;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3