Detection of Breast Cancer through the Analysis of Radiographic Images Using Machine Learning: A Systematic Review

Author:

Jimenez Ayala Kristell YukieORCID

Abstract

Breast cancer is an illness that affects many women and can cause even death; this is a case of not being detected on time, which could be due to a human error during the analysis of radiographic images or not going on time in a health center. For this, using machine learning (ML) to analyze radiographic images is proposed as a support tool for radiologists aiming to reduce false diagnostic rates. While researching information, it was detected that this technology has many benefits in the health area; however, it also has limitations or disadvantages. The importance of this paper is to demonstrate that there are not enough clinical tests nor details about the methodologies that were used; there should be more to assert that ML is defined at the moment of making a diagnosis, which generates no conclusive results regarding effectiveness and therefore creates mistrust in doctors, and some people might rather use deep learning (DL) for its application in the detection of breast cancer because DL has more practical tests and fewer limitations than machine learning.

Publisher

International Association of Online Engineering (IAOE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3