Machine Learning Security in Industry: A Quantitative Survey

Author:

Grosse Kathrin1ORCID,Bieringer Lukas2ORCID,Besold Tarek R.3ORCID,Biggio Battista4ORCID,Krombholz Katharina5

Affiliation:

1. EPFL, Lausanne, Switzerland

2. QuantPi, Saarbrücken, Germany

3. Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, Netherlands

4. Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy

5. CISPA Helmholtz Center of Information Security, Saarbrücken, Germany

Funder

Fondazione di Sardegna

?sterreichische Forschungsf?rderungsgesellschaft

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Computer Networks and Communications,Safety, Risk, Reliability and Quality

Reference43 articles.

1. On adaptive attacks to adversarial example defenses;tramer;Proc Adv Neural Inf Process Syst,2020

2. Membership inference attacks against machine learning models;shokri;arXiv 1610 05820,2016

3. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

4. Motivating the rules of the game for adversarial example research;gilmer;arXiv 1807 06732,2018

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adversarial Machine Learning in Industry: A Systematic Literature Review;Computers & Security;2024-10

2. A Red Teaming Framework for Securing AI in Maritime Autonomous Systems;Applied Artificial Intelligence;2024-09-04

3. Adversarial Machine Learning for Social Good: Reframing the Adversary as an Ally;IEEE Transactions on Artificial Intelligence;2024-09

4. When Young Scholars Cooperate with LLMs in Academic Tasks: The Influence of Individual Differences and Task Complexities;International Journal of Human–Computer Interaction;2024-05-20

5. Threat Modeling of ML-intensive Systems: Research Proposal;Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering - Software Engineering for AI;2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3