Theoretical Perspectives on Deep Learning Methods in Inverse Problems

Author:

Scarlett Jonathan1ORCID,Heckel Reinhard2ORCID,Rodrigues Miguel R. D.3ORCID,Hand Paul4,Eldar Yonina C.5ORCID

Affiliation:

1. Department of Computer Science, the Department of Mathematics, Institute of Data Science, National University of Singapore, Queenstown, Singapore

2. Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany

3. Department of Electronic and Electrical Engineering, University College London, London, U.K

4. College of Science and the Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA

5. Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

Funder

Singapore National Research Foundation

Institute of Advanced Studies at the Technical University of Munich and the Deutsche Forschungsgemeinschaft

The Weizmann-UK Making Connections Programme

Alan Turing Institute

National Science Foundation

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Medicine

Reference150 articles.

1. Deep decoder: Concise image representations from untrained non-convolutional networks;heckel;Proc Int Conf Learn Represent,2019

2. Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk

3. Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation;heckel;Proc Int Conf Mach Learn,2020

4. Rate-optimal denoising with deep neural networks

5. Phase retrieval under a generative prior;hand;Proc Conf Neural Inf Process Syst,2018

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robustness and exploration of variational and machine learning approaches to inverse problems: An overview;GAMM-Mitteilungen;2024-08-07

2. Deep learning for accelerated and robust MRI reconstruction;Magnetic Resonance Materials in Physics, Biology and Medicine;2024-07-23

3. Neural‐network‐based regularization methods for inverse problems in imaging;GAMM-Mitteilungen;2024-07-18

4. Learning to optimize: A tutorial for continuous and mixed-integer optimization;Science China Mathematics;2024-05-08

5. Variational Analysis of Adversarial Regularization for Solving Inverse Problems;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3