Robustness and exploration of variational and machine learning approaches to inverse problems: An overview

Author:

Auras Alexander1ORCID,Gandikota Kanchana Vaishnavi1,Droege Hannah2,Moeller Michael1

Affiliation:

1. Institute for Vision and Graphics University of Siegen Siegen North Rhine‐Westphalia Germany

2. Institute of Computer Science Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn North Rhine‐Westphalia Germany

Abstract

AbstractThis paper provides an overview of current approaches for solving inverse problems in imaging using variational methods and machine learning. A special focus lies on point estimators and their robustness against adversarial perturbations. In this context results of numerical experiments for a one‐dimensional toy problem are provided, showing the robustness of different approaches and empirically verifying theoretical guarantees. Another focus of this review is the exploration of the subspace of data‐consistent solutions through explicit guidance to satisfy specific semantic or textural properties.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference205 articles.

1. Practical cone‐beam algorithm;Feldkamp L. A.;J. Opt. Soc. Am. A Opt. Image Sci.,1984

2. Modern regularization methods for inverse problems;Benning M.;Acta Numer.,2018

3. The Bayesian approach to inverse problems;Dashti M.;Handbook of Uncertainty Quantification,2017

4. Solving inverse problems using data‐driven models;Arridge S.;Acta Numer.,2019

5. Theoretical perspectives on deep learning methods in inverse problems;Scarlett J.;IEEE J. Select. Areas Informat. Theory,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3