The Effect of pH and Cocrystal Quercetin-Isonicotinamide on Quercetin Solubility and its Thermodynamic

Author:

Wisudyaningsih Budipratiwi1,Sallama Solihatus1,Siswandono Siswandono2,Setyawan Dwi2

Affiliation:

1. Faculty of Pharmacy, University of Jember, Jember 68121, Indonesia.

2. Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.

Abstract

This study aimed to improve the solubility of quercetin by solvent pH control method and crystal modification through co-crystal formation using isonicotinamide as its co-former. Solubility of quercetin was tested at nine pH levels using phosphate buffer solvents. Quercetin-isonicotinamide co-crystal was prepared by a solvent evaporation method. Co-crystal preparation was carried out using two different stoichiometric ratios of quercetin-isonicotinamide (1:1 and 1:3). The co-crystalline solubility test was performed in 50 mL citrate buffer (pH 5.0 ± 0.05) at a temperature of 37 ± 0.5C. The thermodynamic parameters of quercetin and co-crystal were analyzed to determine the mechanism of the quercetin solubility process. Increasing the pH of solvents has proven to increase the solubility of quercetin. The quercetin oxidation reaction starts at pH level of 7.4. The formation of quercetin-isonicotinamide co-crystal at ratio of 1:1 and 1:3 shows the increase of quercetin solubility by 1.36 and 1.27 times, respectively. The thermodynamic parameters of the quercetin and quercetinco-crystal, which include entropy, enthalpy, and free energy values, can be used to explain the solubility process of quercetin. Quercetin has increased solubility under alkaline pH conditions, but undergoes an oxidation reaction at pH 7.4 and easily oxidized at alkaline pH. Crystal modification of quercetin by the co-crystal formation method has proven to increase the solubility of quercetin so that it can be used for the development of quercetin as a candidate for effective, safe, and acceptable active pharmaceutical ingredient.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3