Comparison of the variability and nitrogen-fixing activity of rhizobia strains isolated from <i>Trifolium Hybridum</i> L. and <i>Galegaorientalis</i> Lam. nodules at different stages of plant vegetation

Author:

Baymiev Andrei Kh.ORCID,Koryakov Igor S.,Akimova Ekaterina S.,Vladimirova Anastasiya A.,Matniyazov Rustam T.,Baymiev Alexei Kh.ORCID

Abstract

BACKGROUND: The beginning of the life cycle of a leguminous plant in its natural habitat is usually associated with interaction with nodule bacteria in order to form a nitrogen-fixing symbiosis. In a short period of time, a plant needs to “choose” suitable microsymbionts for itself. Since a wide variety of rhizobial strains is formed in the rhizosphere of legumes, the choice made by the macrosymbiont will further influence its productivity. AIM: The purpose of our work was to compare the principles of selection by different plants of their microsymbionts at different stages of plant development. MATERIALS AND METHODS: Nodule bacteria Trifolium hybridum L. and Galegaorientalis Lam. were taken into the study. Their genetic diversity was studied by the RAPD method, a phylogenetic analysis of bacteria and their symbiotic nodC and nifH genes was carried out, and their nitrogen-fixing activity was assessed. RESULTS: It was found that the rhizobia that form nodules on the roots of the studied leguminous plants at different stages of their vegetation have certain patterns. It was found that the highest polymorphism and specific nitrogen-fixing activity are characteristic of bacteria obtained from nodules formed at the initial stage of vegetation. CONCLUSIONS: We assume that the plasticity of the rhizobia genome gives the host plant the ability to more flexibly adjust its nitrogen-fixing apparatus to changes in growing conditions.

Publisher

ECO-Vector LLC

Subject

Genetics (clinical),Genetics,Ecology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Agricultural and Biological Sciences (miscellaneous),Biotechnology,Health, Toxicology and Mutagenesis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3