Fabrication of human Wharton’s jelly extra cellular matrix for tissue engineering

Author:

Kalyuzhnaya L I,Chernov V E,Frumkina A S,Chebotarev S V,Zemlyanoy D A,Tovpeko D V,Kosulin A V

Abstract

The development of tissue engineering is based on the use of the extracellular matrix as a construct to which cells migrate and attach for proliferation, differentiation, and long-term functioning. The preparation of the matrix is one of the most important tasks, since it must be non-immunogenic, have optimal mechanical properties, contain cell adhesion molecules and growth factors and degrade at the predicted time. The search for biomaterial for the manufacture of the matrix is limited by a number of circumstances. Tissue-specific for the matrix intravital biomaterial is limited, cadaveric is not acceptable due to age-related changes or diseases that reduce the regenerative capacity of tissues; synthetic materials lack cell adhesion molecules or are not degraded. The umbilical cord is an accessible homologous biomaterial of non- embryonic origin, preserving the features of the embryonic phenotype. The optimal method of decellularization of the Warton jelly of the human umbilical cord in the manufacture of a full-component cell-free matrix is substantiated. Umbilical cord decellularization was carried out using a detergent method with a 0.05% sodium dodecyl sulfate solution for 24 hours. The quality of the decellularization was evaluated microscopically by staining with fluorescent dye and quantification of nucleic acids. The gentle method used to remove cells from the Warton jelly tissue meets the existing criteria for the effectiveness of decellularization, since only single cells and a small amount of deoxyribonucleic acid remain in the processed biomaterial. The technique does not provide centrifugation at high speeds, in which glycosaminoglycans and proteoglycans are lost from the matrix, the enzymatic action that destroys fibrillar collagen structures, and non-physiological conditions of decellularization. The therapeutic success of tissue-engineering structures based on the extracellular matrix will depend not only on the bioactivity of the umbilical cord, but also on the safety of the composition, structure and mechanical characteristics of the matrix. Due to the availability and non-invasiveness of receiving from healthy young donors, provisional organs are an excellent source of homologous biomaterial for matrix production.

Publisher

ECO-Vector LLC

Reference21 articles.

1. Александров, В.Н. Тканевая инженерия трахеи / В.Н. Александров [и др.] // Вестн. Росс. воен.-мед. акад. - 2016. - № 3 (55). - С. 212-219.

2. Строев, Ю.И. Системная патология соединительной ткани: руководство для врачей / Ю.И. Строев, Л.П. Чурилов. - СПб.: ЭЛБИ-СПб, 2014. - 368 с.

3. Федеральный закон от 23.06.2016 г. № 180-ФЗ «О биомедицинских клеточных продуктах» // Росс. газета. - 2016. - № 139. - 28 июн.

4. Basiri, A. A silk fbroin/decellularized extract of Wharton’s jelly hydrogel intended for cartilage tissue engineering / A. Basiri [et al.] // Progress in Biomaterials. - 2019. - № 8. - P. 31-42.

5. Beiki, B. Fabrication of a three dimensional spongy scaffold using human Wharton’s jelly derived extra cellular matrix for wound healing / B. Beiki [et al.] // Materials science & Engineering. Materials For Biological Applications. - 2017. - Vol. 78. - P. 627-638.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3