Reservation of the Most Important Structural Components of the Human Umbilical Cord after Decellularization as a Stage in the Manufacture of a Highly Regenerative Wound Dressing

Author:

Kalyuzhnaya L.I.1,Sokolova M.O.1,Chernov V.E.1

Affiliation:

1. Federal State Budgetary Educational Institution of Higher Education "Military Medical Academy named after S.М. Kirov", St. Petersburg, 194044, Russia

Abstract

Abstract-To create the basis for the wound covering, we have developed a tissue-engineered cell-free structure from a highly regenerative homologous biomaterial of the human umbilical cord. The construct retains dermal-like structural components and therefore can stimulate the repair of skin imperfections. The composition and structure of the tissue-engineered scaffold from the human umbilical cord was evaluated by microscopic analysis; porosity was revealed, which promotes cell recruitment. Collagens and glycosaminoglycans form the basis of the tissue-engineered umbilical cord scaffold, which provides the physiological and adhesive properties of the final product. Thin long collagen fibers constitute a dense network, similar to the dermal extracellular matrix. The retention of type IV collagen and laminin is important for basement membrane formation and cell attachment. Key words: bioscaffold, matrix, scaffold, decellularization, tissue engineering, wound covering

Publisher

National Research Center Kurchatov Institute

Subject

Ecology,Applied Microbiology and Biotechnology,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decellularized umbilical cord stroma in tissue engineering and regenerative medicine: a systematic review;Russian Journal of Transplantology and Artificial Organs;2023-07-15

2. Biological and functional properties of human umbilical cord-derived lyophilized tissue-engineered matrices;Russian Journal of Transplantology and Artificial Organs;2023-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3