Perifocal Soft Tissue Reactions in Response to Contaminated Implants With a Composite Antibacterial Coating: Experimental Study

Author:

Savchuk Oleg P.ORCID,Tapalski Dmitry V.ORCID,Zinovkin Dmitry A.ORCID,Nikolaev Vladimir I.ORCID,Yarmolenko Maksim A.ORCID,Rogachev Aleksandr A.ORCID

Abstract

Background. Protection against microbial colonization of surface fixators for metal osteosynthesis can reduce the number of infectious complications. The aim of the study was to experimentally assess early perifocal tissue reactions to metal implants with a composite antibacterial coating under microbial load. Methods. Fragments of steel pins for osteosynthesis (diameter 1 mm) with a four-component antibacterial coating based on polylactide, polyurethane, ciprofloxacin and silver nanoparticles were contaminated by methicillin-resistant S. aureus (MRSA) 43431. They were implanted in rats within the quadriceps femoris. Contaminated uncoated pins were used as a control. The animals were withdrawn from the experiment on the 2nd, 4th, 7th day after implantation. Histopathological specimens from tissue around implants were prepared. A semiquantitative assessment of reactions was performed. Results. The microbial load before implantation was (1.120.26)106 S. aureus cells for the control implants and (0.860.31)106 cells for implants with antibacterial coating. Tissue inflammatory reactions on the second day of implantation were equally evident in the control and investigated groups. There was a significant reduction in the number of immune cells and necrotic detritus, as well as increased growth of connective tissue and neoangiogenesis in the experimental group by the 4th day. The appearance of a less pronounced well-vascularized fibrous capsule around the experimental implants was noted by the 7th day. It indicates a more favorable healing of soft tissues in comparison with the control. Conclusion. Weak morphological manifestations of tissue reactions in response to the fitting of contaminated implants with an antibacterial coating can be associated with both the direct antimicrobial effect of the coating components and the anti-inflammatory activity of silver nanoparticles and ciprofloxacin included in its composition.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3