Author:
Vorobieva Viktoriya V.,Shabanov Petr D.
Abstract
The aim of the work was to study the primary bioenergetic mechanisms of hypoxia formation in the myocardial tissue of experimental animals depending on the differentiated physical characteristics of vibration (frequency and duration) and their combination. The study of the functional states of native mitochondria in the composition of the tissue homogenate was carried out using the polarographic method and a galvanic-type closed-oxygen sensor in a 1-ml thermostatic cuvette in a salt incubation medium. The metabolic states of the mitochondria of the myocardium of experimental animals were modeled in vitro during the oxidation of endogenous substrates (before and after the administration of inhibitors of different links of the respiratory chain), with varying exogenous energy substrates (before and after the introduction of 2,4-DNP into the cell). In order to ensure synchronism of measurements in a short time, an incomplete cycle of metabolic states “endogenous respiration → rest → activity” was used. The results of multiple comparisons of variations in kinetic parameters revealed a reliable but multidirectional effect of the frequency of vibration on the rate of oxidation of substrates of the mitochondria of the heart of rabbits in different metabolic states. A change in the duration of exposure to vibration showed an increase in the oxidation rate of endogenous substrates and succinic acid at rest to 21–56 sessions by 17% and 24. 4%, respectively, while the oxidation rate of glutamate decreased to 56 sessions by 24. 5%. Comparison of the general variability of kinetic parameters with a combination of frequency and duration of vibration at different levels of variation showed that it was the interaction of factors that made the most important and significant contribution to the intergroup variability of oxidation rates of endogenous and exogenous substrates, identifying signs of the formation of bioenergetic hypoxia and allowing analysis of the primary physical transformation phenomena in the biological effect.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献