Role of bioenergetic hypoxia in the morphological transformation of the myocardium during vibration disease

Author:

Vorobieva Viktoriya V.ORCID,Levchenkova Ol’ga S.ORCID,Lenskaya Karina V.ORCID

Abstract

BACKGROUND: Analysis of literature on the structural changes in the heart in patients with vibration disease using echocardiographic research methods revealed a concentric type of remodeling of the left ventricular chambers, which is associated with a high risk of cardiovascular complications, including sudden cardiac death, in people of working age. AIM: To determine the role of bioenergetic hypoxia in the development of morphological transformation of the myocardium to substantiate the efficacy of pharmacotherapy for vibration disease. MATERIALS AND METHODS: The energy production activity of cellular systems of heart tissue in vitro was analyzed by the polarographic method using a closed galvanic-type oxygen sensor (Clark electrode). The stressful effects of vibration were confirmed by the dynamics of the morphohistological picture of changes in the myocardial tissue of the left ventricle in the apical region after standard alcohol–paraffin wiring and staining of histological preparations with hematoxylin and eosin. RESULTS: Evaluation of the morphometric and bioenergetic parameters of cardiomyocytes under various experimental vibration modes (7, 21, and 56 sessions with a frequency of 8 and 44 Hz) confirmed the relationship between the provision of tissue with energy potential and morphological signs of pathological structural changes in the myocardial tissue, such as hypertrophy of cardiomyocytes, development of fibrosis, restructuring of the vascular bed, and necrosis. CONCLUSION: Analysis of the relationship between energy metabolism and morphohistological transformation of heart tissue allows us to resolve the role of universal and specific mechanisms in cardiac remodeling in the presence of vibration and pathogenetically substantiate the choice of drugs that not only have a vibration-protective effect but also inhibit pathological structural changes in the myocardial tissue.

Publisher

ECO-Vector LLC

Reference43 articles.

1. Current state of mortality of the working-age population in Russia and Europe

2. Tret’yakov SV, Shpagina LA. Prospects of studying structural and functional state of cardiovascular system in vibration disease patients with arterial hypertension. Russian Journal of Occupational Health and Industrial Ecology. 2017;(12):30–34. EDN: ZXHFIB

3. Bokeriya LA, Bokeriya OL, Le TG. Myocardial electrophysiologic remodeling in heart failure and various heart diseases. Annals of arrhythmology. 2010;7(4):41–48. (In Russ.) EDN: NWFNTH

4. Rehospitalization for Heart Failure

5. Myocardial deformation and parameters of diastolic function of the left ventricle in workers of coal mining enterprises in the South of Kuzbass with arterial hypertension

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3