Tissue specific peculiarities of vibration-induced hypoxia of the rabbit heart, liver and kidney

Author:

Vorobieva Viktoriya V,Shabanov Petr D

Abstract

The purpose of the paper was experimental study of activity of energy production of the heart, liver and kidney after harmful action of general vibration with 8 and 44 Hz frequency. The functional state of native mitochondria in tissue homogenates was studied by polarographic method by means of closed oxygen device of halvanic type in thermostated cuvette of 1 ml volume in the salt medium of incubation. Metabolic states of mitochondria of the rabbit heart, liver and kidney were modeled in vitro in oxidation of endogenous substrates (before and after administration of inhibitors of different stages of breath chain) varying exogenous substrates (before and after administration of 2.4-DNP into the cell). In order to synchronize the changes in short time, the incomplete cycle of metabolic states “endogenous breath → rest → activity” was used. The velocity of mitochondrial oxidation of endogenous substrates was determined by tissue type, and was 16.3 ± 4.3, 5.2 ± 0.6 and 8.13 ± 1.4 ng-atom О min-1mg-1 protein for the heart, liver and kidney of intact animals respectively. In the heart, after high frequent vibration, the reduction of oxidation velocity of NAD-dependent substrates in rest and in active metabolic state of mitochondria was 43 % (р ≤ 0.05) and 30 % (р ≤ 0.01) respectively, while the velocity of oxidation for endogenous succinic acid increased by 77 % (р ≤ 0.05) to 21st session of vibration, then constantly decreasing to the end of vibration sessions. The same changes but in less degree were registerted in the liver and kidney. The systems of energy production of the heart and the studied parenchimatic organs were involved in reaction on vibration exposure and reacted typically by low energetic shift with hyperactivation of endogenous succinic acid system of oxidation and inhibition of NAD-depended part of the breath chain of mitochondria. Therefore, the study of bioenergetics mechanisms of hypoxia in different tissues allows to clear the molecular targets for pharmacological action by means of substrate antihypoxants.

Publisher

ECO-Vector LLC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3