Safety and Effectiveness of Using Double-Ended Allograft in the Repair of Large Defects of Bi-Epiphyseal Bones in Experiment

Author:

D’yachkov Alexandr N.ORCID,Migalkin Nikolay S.ORCID,Stogov Maksim V.ORCID,Soldatov Yuryi P.ORCID,Dyuryagina Olga V.ORCID,Tushina Natalia V.ORCID

Abstract

BACKGROUND: The repair of large defects in the long bones remains one of the most pressing problems in traumatology and orthopedics. AIM: To evaluate the effectiveness and technological safety of the repair of large defects of the long bi-epiphyseal bones including the use of double-ended bone allografts to demarcate the defect cavity from the surrounding tissues and fixation of bone fragments using an external fixation device. MATERIALS AND METHODS: Experiments were conducted on 14 adult nonpedigree male and female dogs aged 12 years. The double-ended allograft was used to demarcate the formed defect of the tibial bones at 1.5 diameter length of the shinbone. The bone fragments were fixed with Ilizarov apparatus adapted for experiments on dogs. The maximal follow-up period was 2 years after the surgery. In the dynamics of the experiment, life-time observations, X-ray examination, and laboratory control were conducted. After euthanasia, the implantation zone was examined histologically. RESULTS: The visual signs of the restructure of the transplants were identified starting from day 35 after surgery. The bone regenerates in the defect zone completely formed within 3 months after the surgery. This permitted the removal of the external fixation apparatus in 3 months after the surgery. The restructuring of the newly formed part of the bone continued for 2 years after the operation. No significant changes in the laboratory parameters in the dynamics of the experiment were observed. No changes could be evaluated as negative phenomena. No serious unwanted events were recorded either. CONCLUSION: The proposed technique for the repair of large defects of long bi-epiphyseal bones demonstrated safety and sufficient effectiveness in the speed of regeneration of the defect and quality of the bones formed.

Publisher

ECO-Vector LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3