Abstract
Abstract
Background
Bone defects can be seen everywhere in the clinic, but it is still a challenge for clinicians. Bibliometrics tool CiteSpace is based on the principle of “co-citation analysis theory” to reveal new technologies, hotspots, and trends in the medical field. In this study, CiteSpace was used to perform co-citation analysis on authors, countries (regions) and institutions, journals and cited journals, authors and cited literature, as well as keywords to reveal leaders, cooperative institutions, and research hotspots of bone defects and predict development trends.
Method
Data related to bone defect from 1994 to 2019 were retrieved from the Web of Science core collection; then, we use Excel to construct an exponential function to predict the number of annual publications; conduct a descriptive analysis on the top 10 journals with the largest number of publications; and perform co-citation analysis on authors, countries (regions) and institutions, journals and cited journals, authors and cited reference, and keywords using CiteSpace V5.5 and use the Burst Detection Algorithm to perform analysis on the countries (regions) and institutions and keywords, as well as cluster the keywords using log-likelihood ratio.
Results
A total of 5193 studies were retrieved, and the number of annual publications of bone defects showed an exponential function Y = 1×10− 70e0.0829x (R2 = 0.9778). The high-yield author was Choi Seong-Ho at Yonsei University in South Korea. The high-yielding countries were the USA and Germany, and the high-yielding institutions were the Sao Paulo University and China and the Chinese Academy of Sciences which were the emerging research countries and institutions. The research results were mainly published in the fields of dentistry, bone, and metabolism. Among them, the Journal of Dental Research and Journal of Bone and Mineral Research were high-quality journals that report bone defect research, but the most cited journal was the Clinical Orthopaedics and Related Research. Hot keywords were regeneration, repair, in vitro, bone regeneration, reconstruction, and graft. The keywords that were strongly cited in 2010–2019 were transportation, osteogenic differentiation, proliferation, and biomaterials. After 2018, proliferation, osteogenic differentiation, stromal cells, transmission, and mechanical properties have become new vocabulary. The drug delivery, vascularization, osteogenic differentiation and biomaterial properties of bone defects were expected to be further studied.
Conclusion
The application of CiteSpace can reveal the leaders, cooperating institutions and research hotspots of bone defects and provide references for new technologies and further research directions.
Funder
National Natural Science Foundation of China
International Program for Postgraduates, Guangzhou University of Chinese Medicine
Excellent Doctoral Dissertation Incubation Grant of Guangzhou University of Chinese Medicine
Excellent Doctoral Dissertation Incubation Grant of First Clinical School of Guangzhou University of Chinese Medicine
Huang Feng Guangdong Provincial Famous Chinese Medicine Heritage Studio
Discipline Promotion Project of Guangzhou University of Chinese Medicine
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Reference48 articles.
1. Moris V, Loisel F, Cheval D, See LA, Tchurukdichian A, Pluvy I, et al. Functional and radiographic evaluation of the treatment of traumatic bone loss of the hand using the Masquelet technique. Hand Surg Rehabil. 2016;35(2):114–21.
2. Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet. 2000;45(3):346–53.
3. Vu DD, Schmidt BL. Quality of life evaluation for patients receiving vascularized versus nonvascularized bone graft reconstruction of segmental mandibular defects. J Oral Maxillofac Surg. 2008;66(9):1856–63.
4. Yin J, Gong L, Wang S. Large-scale assessment of global green innovation research trends from 1981 to 2016: a bibliometric study. J Clean Prod. 2018;197(1):827–41.
5. Li J, Chen M. CiteSpace: Text mining and visualization in scientific literature. Secondrd ed. Beijing: Capital University of Economics and Business Press; 2016. p. 143.