Estimation of burned areas in forest fires using artificial neural networks

Author:

Calp M. Hanefi,Kose Utku

Abstract

Introduction: This article is the product of the research “Developing an Artificial Neural Network Based Model for Estimating Burned Areas in Forest Fires”, developed at Karadeniz Technical University in the year 2020. Problem: Forest Fires are an issue that greatly affect human life and the ecological order, leaving long-term issues. It should be estimated because it is not known when, where and how much the fire will be in the area. Objective: The objective of the research is to use artificial neural networks to estimate the burned areas in forest fires. Methodology: A feed-forward backpropagation neural network model was used for estimating the burned areas. Results: We performed a performance evaluation over the proposed model by considering Regression values, Mean Absolute Percentage Error (MAPE) and Mean Square Error (MSE). The results show that the model is efficient in terms of its estimation of burnt areas. Conclusions: The proposed artificial neural network model has low error rate and high estimation accuracy. It is more effective than traditional methods for estimating burned areas in forests. Originality: To the best of our knowledge, this is the first time that this real, unique data has been used for building and testing the model’s estimations and the improvements that have been made in producing results faster and more accurately than with traditional methods. Limitations: Since there are regional differences over different forest areas, effective criteria need to be analysed regarding the target regions.  

Publisher

Universidad Cooperativa de Colombia- UCC

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3