Sobolev spaces of functions on a Hilbert space endowed with a translation-invariant measure and approximations of semigroups

Author:

Busovikov V. M.,Sakbaev V. Zh.

Abstract

Abstract We study measures on a real separable Hilbert space that are invariant under translations by arbitrary vectors in . We define the Hilbert space of complex-valued functions on square-integrable with respect to some translation-invariant measure . We determine the expectations of the operators of shift by random vectors whose distributions are given by semigroups (with respect to convolution) of Gaussian measures on . We prove that these expectations form a semigroup of self-adjoint contractions on . We obtain a criterion for the strong continuity of such semigroups and study the properties of their generators (which are self-adjoint generalizations of Laplace operators to the case of functions of infinite-dimensional arguments). We introduce analogues of Sobolev spaces and spaces of smooth functions and obtain conditions for the embedding and dense embedding of spaces of smooth functions in Sobolev spaces. We apply these function spaces to problems of approximating semigroups by the expectations of random processes and study properties of our generalizations of Laplace operators and their fractional powers.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

IOP Publishing

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3