Abstract
Abstract
Galton-Watson random forests with a given number of root trees and a known number of nonroot vertices are investigated. The distribution of the number of direct offspring of each particle in the forest- generating process is assumed to have infinite variance. Branching processes of this kind are used successfully to study configuration graphs aimed at simulating the structure and development dynamics of complex communication networks, in particular the internet. The known relationship between configuration graphs and random forests reflects the local tree structure of simulated networks. Limit theorems are proved for the maximum size of a tree in a random forest in all basic zones where the number of trees and the number of vertices tend to infinity.
Bibliography: 14 titles.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Algebra and Number Theory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献