Life cycle support software components

Author:

Kudzh S. A.1ORCID,Tsvetkov V. Ya.1,Rogov I. E.1

Affiliation:

1. MIREA – Russian Technological University

Abstract

Modern software development is based on a systems approach, in which a program or software complex is considered as a system of interacting software components. Models of software components are analogs of complex system subsystems. Therefore, a complex program is considered as a system of software components. The organization of the structure of software components affects the quality and result of the program. The organization of interaction between software components affects the efficiency of the program. An important factor in the system of software components is the life cycle, which determines the effectiveness and feasibility of using this program. Software differs from many complex systems and information systems in that it has the ability to increase its life cycle. Moreover, the need to increase the life cycle is characterized by two factors: external and internal. The internal factor arises due to the obsolescence of the program. In this case, it does not meet the new conditions, for example, a new operating system. The external factor arises from external influences in the form of interference or purposeful actions, such as computer viruses. The problem of creating the structure of software components of computing systems and information systems that ensure the duration of the life cycle in the presence of external influences is topical. The study of this problem contributes to the improvement of the technological base of computing systems and information systems that solve applied problems. The article presents a new life cycle model based on two models of growth and degradation. The article recommends a resource-based approach for life cycle assessment. As an analytical solution, it is proposed to use a logistic equation, which describes the mechanisms of the life cycle formation process quite well. The article discusses three types of resource in calculations: physical, technological and communicative. A general redundancy solution is proposed to create a network with the inclusion of a multigraph model.

Publisher

RTU MIREA

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3