Comparative analysis of software optimization methods in context of branch predication on GPUs

Author:

Sesin I. Yu.1ORCID,Bolbakov R. G.1ORCID

Affiliation:

1. MIREA – Russian Technological University

Abstract

General Purpose computing for Graphical Processing Units (GPGPU) technology is a powerful tool for offloading parallel data processing tasks to Graphical Processing Units (GPUs). This technology finds its use in variety of domains – from science and commerce to hobbyists. GPU-run general-purpose programs will inevitably run into performance issues stemming from code branch predication. Code predication is a GPU feature that makes both conditional branches execute, masking the results of incorrect branch. This leads to considerable performance losses for GPU programs that have large amounts of code hidden away behind conditional operators. This paper focuses on the analysis of existing approaches to improving software performance in the context of relieving the aforementioned performance loss. Description of said approaches is provided, along with their upsides, downsides and extents of their applicability and whether they address the outlined problem. Covered approaches include: optimizing compilers, JIT-compilation, branch predictor, speculative execution, adaptive optimization, run-time algorithm specialization, profile-guided optimization. It is shown that the aforementioned methods are mostly catered to CPU-specific issues and are generally not applicable, as far as branch-predication performance loss is concerned. Lastly, we outline the need for a separate performance improving approach, addressing specifics of branch predication and GPGPU workflow.

Publisher

RTU MIREA

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of digital device hardware vulnerabilities based on scanning systems and semi-natural modeling;Russian Technological Journal;2024-08-05

2. Method for designing specialized computing systems based on hardware and software co-optimization;Russian Technological Journal;2024-05-31

3. Automatic Classification of Liquid Crystal Images Based on Topological Analysis;IEEE Sensors Journal;2023-01-15

4. Feasibility Issues of Complex Information Systems;2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA);2022-11-09

5. Prospects for using soft processors in systems-on-a-chip based on field-programmable gate arrays;Russian Technological Journal;2022-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3