Examination of the Nvidia RTX

Author:

Санжаров Вадим1,Sanzharov Vadim2,Горбоносов Алексей3,Gorbonosov Alexey4,Фролов Владимир5,Frolov Vladimir6,Волобой Алексей7,Voloboy Alexey8

Affiliation:

1. Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М.Губкина

2. Rossiyskiy gosudarstvennyy universitet nefti i gaza (nacional'nyy issledovatel'skiy universitet) imeni I.M.Gubkina

3. Московский государственный университет имени М.В. Ломоносова

4. Moskovskiy gosudarstvennyy universitet imeni M.V. Lomonosova

5. Институт прикладной математики имени М.В. Келдыша РАН

6. Institut prikladnoy matematiki imeni M.V. Keldysha RAN

7. Институт прикладной математики им. М.В.Келдыша РАН

8. Institut prikladnoy matematiki im. M.V.Keldysha RAN

Abstract

Hardware acceleration of ray tracing is an active research field, but only with the release of Nvidia Turing architecture GPUs it became widely available. Nvidia RTX is a proprietary hardware ray tracing acceleration technology available in Vulkan and DirectX APIs as well as through Nvidia OptiX. Since the implementation details are unknown to the public, there are a lot of questions about what it actually does under the hood. To find answers to these questions, we implemented classic path tracing algorithm using RTX via both DirectX and Vulkan and conducted several experiments with it to investigate the inner workings of this technology. We tested actual hardware implementation of RTX technology on RTX2070 GPU and the software fallback in the driver on GTX1070 GPU. In this paper we present results of these experiments and speculate on the internal architecture of RTX.

Publisher

Bryansk State Technical University

Reference25 articles.

1. Aila T., Karras T. Architecture considerations for tracingincoherent rays //High-performance Graphics.– Eurographics Association, 2010. – p. 113-122., Aila T., Karras T. Architecture considerations for tracingincoherent rays //High-performance Graphics.– Eurographics Association, 2010. – p. 113-122.

2. Deng Y. et al. Toward real-time ray tracing: A survey onhardware acceleration and microarchitecture tech-niques //ACM Computing Surveys (CSUR). – 2017. – . 50. – №. 4.– p. 58., Deng Y. et al. Toward real-time ray tracing: A survey onhardware acceleration and microarchitecture tech-niques //ACM Computing Surveys (CSUR). – 2017. – . 50. – №. 4.– p. 58.

3. Gribble C. P., Ramani K. Coherent ray tracing viastream filtering //2008 IEEE Symposium on Interac-tiveRay Tracing. – IEEE, 2008. – p. 59-66., Gribble C. P., Ramani K. Coherent ray tracing viastream filtering //2008 IEEE Symposium on Interac-tiveRay Tracing. – IEEE, 2008. – p. 59-66.

4. Hall. D. The AR350: Today’s ray trace renderingprocessor. //Eurographics/SIGGRAPH workshop onGraphics hardware - Hot 3D Session 1, 2001, Hall. D. The AR350: Today’s ray trace renderingprocessor. //Eurographics/SIGGRAPH workshop onGraphics hardware - Hot 3D Session 1, 2001

5. Kajiya J. T. The rendering equation //ACM SIG-GRAPHcomputer graphics. – ACM, 1986. – . 20. –№. 4. – p.143-150., Kajiya J. T. The rendering equation //ACM SIG-GRAPHcomputer graphics. – ACM, 1986. – . 20. –№. 4. – p.143-150.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovations in AI-Based Visual Effect Software: Ushering in a New Era of Filmmaking;Journal of Digital Contents Society;2024-08-31

2. Real-time Modeling of Dynamic Terrain Shadows based on Multilevel Ray Casting;Programming and Computer Software;2022-05-30

3. Development of a hardware-accelerated simulation kernel for ultra-high vacuum with Nvidia RTX GPUs;The International Journal of High Performance Computing Applications;2021-12-11

4. Comparative analysis of software optimization methods in context of branch predication on GPUs;Russian Technological Journal;2021-12-02

5. Multi‐GPU room response simulation with hardware raytracing;Concurrency and Computation: Practice and Experience;2021-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3