Predictive Policing for Reform? Indeterminacy and Intervention in Big Data Policing

Author:

Shapiro Aaron

Abstract

Predictive analytics and artificial intelligence are applied widely across law enforcement agencies and the criminal justice system. Despite criticism that such tools reinforce inequality and structural discrimination, proponents insist that they will nonetheless improve the equality and fairness of outcomes by countering humans’ biased or capricious decision-making. How can predictive analytics be understood simultaneously as a source of, and solution to, discrimination and bias in criminal justice and law enforcement? The article provides a framework for understanding the techno-political gambit of predictive policing as a mechanism of police reform—a discourse that I call “predictive policing for reform.” Focusing specifically on geospatial predictive policing systems, I argue that “predictive policing for reform” should be seen as a flawed attempt to rationalize police patrols through an algorithmic remediation of patrol geographies. The attempt is flawed because predictive systems operate on the sociotechnical practices of police patrols, which are themselves contradictory enactments of the state’s power to distribute safety and harm. The ambiguities and contradictions of the patrol are not resolved through algorithmic remediation. Instead, they lead to new indeterminacies, trade-offs, and experimentations based on unfalsifiable claims. I detail these through a discussion of predictive policing firm HunchLab’s use of predictive analytics to rationalize patrols and mitigate bias. Understanding how the “predictive policing for reform” discourse is operationalized as a series of technical fixes that rely on the production of indeterminacies allows for a more nuanced critique of predictive policing.

Publisher

Queen's University Library

Subject

Urban Studies,Safety Research

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3