Recommendation System for Clustering to Allocate Classes for New Students Using The K-Means Method

Author:

Ariyanto YuriORCID,Sabilla Wilda Imama,As Sidiq Zidan Shabira

Abstract

SMAN 1 Durenan has a plan to organize the allocation of classes for new students using a system to achieve practical and efficient student grouping. The reason for implementing this class allocation system is SMAN 1 Durenan aims to create a new system to process student data for class allocation according to specific needs. This research involves the development of a Recommendation System for Clustering to Allocate Classes for New Students using the K-Means method. The system processes data of newly enrolled students at SMAN 1 Durenan based on specific attributes. The results of this student data processing serve as considerations and references for SMAN 1 Durenan to perform class allocation as needed. The analysis in this research utilizes the K-Means method to obtain data clusters that maximize the similarity of characteristics within each group and maximize the differences between the collections created. The developed recommendation system website provides information about the student data clustering results from the K-Means process at SMAN 1 Durenan.

Publisher

Institut Teknologi Dirgantara Adisutjipto (ITDA)

Reference17 articles.

1. M. Cendani, D. Ardian Pramana, and E. Sudrajat, "Sistem Informasi Kearsipan Menggunakan Framework Laravel (Studi Kasus: Prodi Sistem Informasi Universitas Peradaban)," J. Sist. Inf. dan Teknol. Perad., vol. 4, no. 1, 2023, [Online]. Available: www.journal.peradaban.ac.id.

2. M. S. Fauzi and S. Samsudin, "Smart School Berbasis Web Interaktif di SD Swasta Amaliyah Sunggal dengan Algoritma K-Means Cluster," J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 332-341, 2022, doi: 10.32736/sisfokom.v11i3.1479.

3. M. A. Saputra and Soedjarwo, "Implementasi sistem informasi manajemen berbasis aplikasi mobile pada jenjang sma," J. Inspirasi Manaj. Pendidik., vol. Vol. 09, no. No. 02, pp. 361-376, 2021.

4. F. Nasari and C. J. M. Sianturi, "Penerapan Algoritma K-Means Clustering Untuk Pengelompokkan Penyebaran Diare Di Kabupaten Langkat," CogITo Smart J., vol. 2, no. 2, pp. 108-119, 2016, doi: 10.31154/cogito.v2i2.19.108-119.

5. E. D. Sikumbang, "Penerapan Data Mining Dengan Algoritma Apriori," J. Tek. Komput. AMIK BSI, vol. 9986, no. September, pp. 1-4, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3