Design of MPPT PV using Particle Swarm Optimization Algorithm under Partial Shading Condition

Author:

Wirateruna Efendi S,Millenia Annisa Fitri Ayu

Abstract

Fossil energy sources experience a decrease each year when the demand increases significantly. In the case of environmental issues, renewable energy sources (RES) can be energy alternatives. The photovoltaic module is RES with unique characteristics, especially partial shading conditions. This condition leads to the PV characteristic curve experiencing multiple peaks. The paper conducted the simulation of the PV solar panel module using MATLAB Simulink. The Maximum Power Point Tracking (MPPT) PV is also described based on a particle swarm optimization (PSO) algorithm. The proposed algorithm can address multiple peak curve problems due to partial shading conditions. For comparison, the conventional algorithm, perturb & observe, is presented. The PV module is divided into three group cells with irradiance differences for each group to illustrate the partial shading condition. The result shows that the PSO algorithm guarantees optimal and fast response for the operating PowerPoint. It needs about 0.04 seconds to maintain at the optimal power point, 129 Watt, compared with the perturb and observe algorithm performance that only kept at the lower operating power point, 67 Watt at 0.06 second. Thus, the PSO algorithm can tackle the partial shading condition with a fast response to maintain the maximum PowerPoint. Therefore, the PSO algorithm is the proper solution for tracking the optimum operating power point under partial shading conditions.

Publisher

Dr. Soetomo University

Subject

Polymers and Plastics,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3