Author:
Wirateruna Efendi S,Millenia Annisa Fitri Ayu
Abstract
Fossil energy sources experience a decrease each year when the demand increases significantly. In the case of environmental issues, renewable energy sources (RES) can be energy alternatives. The photovoltaic module is RES with unique characteristics, especially partial shading conditions. This condition leads to the PV characteristic curve experiencing multiple peaks. The paper conducted the simulation of the PV solar panel module using MATLAB Simulink. The Maximum Power Point Tracking (MPPT) PV is also described based on a particle swarm optimization (PSO) algorithm. The proposed algorithm can address multiple peak curve problems due to partial shading conditions. For comparison, the conventional algorithm, perturb & observe, is presented. The PV module is divided into three group cells with irradiance differences for each group to illustrate the partial shading condition. The result shows that the PSO algorithm guarantees optimal and fast response for the operating PowerPoint. It needs about 0.04 seconds to maintain at the optimal power point, 129 Watt, compared with the perturb and observe algorithm performance that only kept at the lower operating power point, 67 Watt at 0.06 second. Thus, the PSO algorithm can tackle the partial shading condition with a fast response to maintain the maximum PowerPoint. Therefore, the PSO algorithm is the proper solution for tracking the optimum operating power point under partial shading conditions.
Subject
Polymers and Plastics,General Environmental Science
Reference12 articles.
1. A. Shahsavari and M. Akbari, “Potential of solar energy in developing countries for reducing energy-related emissions,” Renewable and Sustainable Energy Reviews, vol. 90, no. C, pp. 275–291, 2018, [Online]. Available: https://EconPapers.repec.org/RePEc:eee:rensus:v:90:y:2018:i:c:p:275-291
2. V. S. Arutyunov and G. v Lisichkin, “Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels?,” Russian Chemical Reviews, vol. 86, no. 8, pp. 777–804, Aug. 2017, doi: 10.1070/rcr4723.
3. B. Liu, C. Fu, A. Bielefield, and Y. Q. Liu, “Forecasting of Chinese Primary Energy Consumption in 2021 with GRU artificial neural network,” Energies (Basel), vol. 10, no. 10, Oct. 2017, doi: 10.3390/en10101453.
4. A. Nur Nazilah Chamim et al., “Analysis of Potential Alternative Energy Sources for Electricity Conservation in Yogyakarta State Finance Building,” Journal of Electrical Technology UMY (JET-UMY), vol. 3, no. 3, 2019.
5. K. Vansant et al., “INVESTIGATION OF CORRELATION BETWEEN FIELD PERFORMANCE AND INDOOR ACCELERATION MEASUREMENTS OF POTENTIAL INDUCED DEGRADATION (PID) FOR C-SI PV MODULES,” 2017. [Online]. Available: https://www.researchgate.net/publication/330398059
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献