Research on Photovoltaic Maximum Power Point Tracking Control Based on Improved Tuna Swarm Algorithm and Adaptive Perturbation Observation Method

Author:

Li Xianqi1,He Ye1,Li Maojun2

Affiliation:

1. State Key Laboratory of Disaster Prevention and Reduction for Power Grid, Changsha University of Science and Technology, Changsha 410114, China

2. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

In situations where photovoltaic (PV) systems are exposed to varying light intensities, the conventional maximum power point tracking (MPPT) control algorithm may become trapped in a local optimal state. In order to address this issue, a two-step MPPT control strategy is suggested utilizing an improved tuna swarm optimization (ITSO) algorithm along with an adaptive perturbation and observation (AP&O) technique. For the sake of enhancing population diversity, the ITSO algorithm is initialized by the SPM chaos mapping population. In addition, it also uses the parameters of the spiral feeding strategy of nonlinear processing and the Levy flight strategy adjustment of the weight coefficient to enhance global search ability. In the two-stage MPPT algorithm, the ITSO is applied first to track the vicinity of the global maximum power point (MPP), and then it switches to the AP&O method. The AP&O method’s exceptional local search capability enables the global MPP to be tracked with remarkable speed and precision. To confirm the effectiveness of the suggested algorithm, it is evaluated against fuzzy logic control (FLC), standard tuna swarm optimization (TSO), grey wolf optimization (GWO), particle swarm optimization (PSO), and AP&O. Finally, the proposed MPPT strategy is verified by the MATLAB R2022b and RT-LAB experimental platform. The findings indicate that the suggested method exhibits improved precision and velocity in tracking, efficiently following the global MPP under different shading conditions.

Funder

The Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3