Affiliation:
1. NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTESİ
2. Nevşehir Hacı Bektaş Veli Üniversitesi
Abstract
Financial distress, which can lead to bankruptcy or liquidation, is important for companies, creditors, investors, and the economy. Recent financial crises and global economic fluctuations have brought this issue to the forefront. In an effort to foresee financial distress, methods like Altman's Z-score have been proposed while, recent developments have allowed for the incorporation of recent techniques like machine learning. The purpose of this study is to forecast the emergence of financial distress in BIST Industrials Index (XUSIN) companies by using the k-means clustering algorithm, Altman Z-score and Springate S-score models with firm level financial indicators where we investigated successful and unsuccessful companies. Our findings show that two companies met all three Altman Z-score, Zꞌ-score, S-score and financial situation criteria in 2011, 2012, 2015, and 2017; 2 companies in 2016 and 2018; 5 companies in 2013 and 2014; 4 companies in 2019; 1 company in 2020 where no companies are grouped in the same groups in 2021, which means the methods reach different results. It has been determined that the k-means clustering algorithm, particularly due to its higher separability, provides more accurate clustering results for the concerned parties compared to other methods.
Publisher
Ekonomi Politika ve Finanas Arastirmalari Dergisi
Reference70 articles.
1. Agustini, N.W. and Wirawati, N.G.P. (2019). Pengaruh rasio keuangan pada financial distress perusahaan ritel yang terdaftar di bursa efek Indonesia (BEI). E-Jurnal Akuntansi, 26(1), 251-280. https://doi.org/10.24843/eja.2019.v26.i01.p10
2. Aker, Y. and Karavardar, A. (2023). Using machine learning methods in financial distress prediction: Sample of small and medium sized enterprises operating in Turkey. Ege Academic Review, 23(2), 145-162, https://doi.org/10.21121/eab.1027084
3. Akyuz, K.C., Balaban, Y. and Yildirim, I. (2012). Bilanço oranları yardımıyla orman ürünleri sanayisinin finansal yapısının değerlendirilmesi. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 9, 133-144. Retrieved from https://dergipark.org.tr/tr/pub/ulikidince/
4. Al Zaabi, O.S.H. (2011). Potential for the application of emerging market Z-score in UAE Islamic banks. International Journal of Islamic and Middle Eastern Finance and Management, 4(2), 158-173. doi:10.1108/17538391111144498
5. Alamsyah, A., Kristanti, N. and Kristanti, F.T. (2021). Early warning model for financial distress using artificial neural network. Paper presented at the IOP Conference Series: Materials Science and Engineering. Retrived from https://iopscience.iop.org/article/10.1088/1757-899X/1098/5/052103/meta