Using Machine Learning Methods in Financial Distress Prediction: Sample of Small and Medium Sized Enterprises Operating in Turkey

Author:

AKER YusufORCID,KARAVARDAR Alper1

Affiliation:

1. GİRESUN ÜNİVERSİTESİ

Abstract

Financial distress has become one of the main topics on which lots of research has been done in the recent finance literature. This paper aims to predict the financial distress of Turkish small and medium firms using Logistic Regression, Decision Tree, Random Forest, Support Vector Machines, K-Nearest Neighbor and Naive Bayes model. Empirical results indicate that decision tree model is the best classifier with overall accuracy of %90 and %97 respectively for 1 and 2 years prior to financial distress. Three years prior to financial distress, Naive Bayes outperform other models with an overall accuracy of 92.86%. Furthermore, this study finds that distressed firms have more bank loans and lower equity. In the Turkish economy, where cyclical fluctuations are high in the last decade, distressed firms grew rapidly with high bank loans and gained higher operating profits than non-distressed firms. After a while, distressed firms that cannot manage their financial expenses get into financial trouble and go bankrupt. This article can be useful for managers, investors and creditors as well as its contribution to academic research.

Publisher

Ege Akademik Bakis (Ege Academic Review)

Subject

General Engineering

Reference53 articles.

1. Aksoy, B. (2018). İşletmelerde Finansal Başarısızlık Tahmininde Veri Madenciliği Yöntemlerinin Karşılaştırılması: BİST’te Bir Uygulama. Yayımlanmamış Doktora Tezi, Erciyes Üniversitesi Sosyal Bilimler Enstitüsü, Kayseri.

2. Aksoy, B., & Boztosun, D. (2018). Diskriminant ve Lojistik Regresyon Yöntemleri Kullanlarak Finansal Başarısızlık Tahmini: BİST İmalat Sektörü Örneği. Finans Politik & Ekonomik Yorumlar Dergisi, 646, 9–32.

3. Aksoy, B., & Boztosun, D. (2019). İmalat İşletmelerinde Makine Öğrenmesi Yöntemleri Kullanılarak Finansal Başarısızlık Tahmini ve Sınıflandırma Performansının Karşılaştırılması: Borsa İstanbul Örneği, 2. Uluslar arası Bankacılık Kongresi Bildiriler Kitabı, 2019, Çorum, s. 11–18. ISBN:978-605-5244-15-6.

4. Aktaş, R., Doğanay, M., & Yıldız, B. (2003). Mali Başarısızlığın Öngörülmesi: İstatistiksel Yöntemler ve Yapay Sinir Ağı Karşılaştırılması. Ankara Üniversitesi SBF Dergisi, 58(4), 3–24. https://doi.org/10.1501/sbfder_0000001691

5. Altman, E. I. (1968). The Prediction of Corporate Bankruptcy: A Discriminant Analysis. The Journal of Finance, 23(1), 193. https://doi.org/10.2307/2325319.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3