Evaluation of circumferential cracks in metal tubes based on a magnetic field response model of eddy current testing

Author:

Jiang Feng,Liu Shulin,Xin Shaojie,Zhang Hongli

Abstract

According to the characteristics of circumferential cracks on the inner surface of metal tubes, a magnetic field response method has been proposed and a mathematical analytical model for detecting the circumferential crack has also been established. The theoretical model, based on the magnetic field response, could be expressed as a series sum of trigonometric and Bessel functions. The relationship between the distribution of the magnetic field in the inner region of the metal tube and the geometrical size of the cracks is also analysed. The results show that the analytical model can effectively explain and analyse the variation of the surrounding magnetic field caused by the crack. The characteristic parameters of the crack, Br and Bz , which are extracted from the magnetic field, have certain quantitative recognition abilities. In addition, an increase in the thickness of the metal tube causes a larger range of magnetic field variations and is considered to be disadvantageous for detecting a change in the magnetic induction intensity that is a result of the crack. A theoretical model and research results contribute to the development of eddy current testing and improve the accuracy of the non-destructive testing and evaluation of metal tubes.Publisher Note: Following the original publication of this paper, a change was made to the author affiliations on page 91. Full details can be found in the correction notice given after page 97 of the PDF for this article.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3